Thermal Conductivity of Aqueous Solutions of NaCl and KCl at High Pressures

I. M. Abdulagatov¹ and U. B. Magomedov¹

Received January 12, 1994

This paper presents new experimental measurements of the thermal conductivity of aqueous solutions of NaCl and KCl at high pressures. The measurements were made with a parallel-plate apparatus. The temperatures covered the range from 293 to 473 K at pressures up to 100 MPa and concentrations from 0.025 to 0.25 mass fraction of NaCl and KCl. The measurements included 6 isobars at pressures from 0.1 to 100 MPa at intervals of 20 MPa, 10 isotherms at temperatures from 293 to 473 K at intervals of 20 K, and 6 isopleths at concentrations from 0.025 to 0.25 mass fraction of NaCl and KCl at intervals of 0.05. The precision of the measurements was $\pm 1.6\%$. The thermal conductivity obtained for NaCl + H₂O and KCl + H₂O was compared with data of other authors, with satisfactory agreement. The viability of the technique was confirmed and the essential features of a high-precision instrument were established.

KEY WORDS: aqueous solutions; high pressures; KCI: NaCI; thermal conductivity.

1. INTRODUCTION

NaCl and KCl are important primary salts in seawater and most other natural waters and in many industrially important fluids. Thermal-conductivity data on electrolyte aqueous solutions are required in the development and utilization of many industrial energy systems. For example, data on geothermal brines and seawater; which can be considered as mixtures of aqueous solutions of NaCl and KCl, are needed for geothermal and ocean thermal-energy utilization devices and for desalination of seawater. In addition, there is considerable interest in the transport properties of

¹ Institute of Geothermal Problems, Dagestan Scientific Center of the Russian Academy of Sciences, Kalinina 39-A, Makhachkala 367030, Dagestan, Russia.

NaCl + H₂O and KCl + H₂O from the standpoint of the theory of ionic solutions. There are many interesting differences between ionic and nonionic fluids [1, 2]. However, measurements of the thermal conductivity of these fluids have so far been restricted to limited ranges of temperature, pressure, and concentration. We have developed a parallel-plate apparatus for making precise measurements of the thermal conductivity of electrically conducting liquids. In this study, we measured the thermal conductivity of aqueous NaCl and KCl solutions from 293 to 473 K and at pressures up to 100 MPa and concentrations from 0.025 to 0.25 mass fractions of NaCl and KCl. The experiments were made in the liquid-phase region.

Previously the thermal conductivity of aqueous solutions of NaCl and KCl has been investigated by a number of authors [3-13, 17]. Table I identifies the selected primary data sets, indicating their individual pressure, temperature, and concentration ranges and the method of measurement. In the literature, a considerable amount of data is available

First author [Ref. No.]	Year	System	Method	Temperature range (K)	Maximum pressure (MPa)	Concentra- tions (mass fraction)
Riedel [3]	1951	$NaCl + H_2O$ $KCl + H_2O$	Coaxial cylinder Parallel- plate	293	0.1	0.05–0.25 0.05–0.20
Kapustinskii [4]	1955	$NaCl + H_2O$ $KCl + H_2O$	Parallel- plate	293	0.1	0.02-0.25 0.02-0.25
Vargaftik [5]	1956	$NaCl + H_2O$ $KCl + H_2O$	Hot wire	293-303	0.1	00.20 00.20
Davis [6]	1971	$NaCl + H_2O$ $KCl + H_2O$	Hot wire	288-318	0.1	0.03-0.15 0.03-0.15
Yusufova [7]	1975	$NaCl + H_2O$	Parallel- plate	293-603	2	0.02-0.25
Nagasaka [9]	1983	$NaCl + H_{2}O$	Hot wire	273-353	40	0.055-0.226
Nagasaka [13]	1984	$NaCl + H_2O$ $KCl + H_2O$	Hot wire	273-473	50	0.05-0.23
Eldarov [8]	1986	$NaCl + H_2O$	Hot wire	293-473	30	0.05-0.30
Magomedov [11]	1989	$NaCl + H_2O$ $KCl + H_2O$	Parallel- plate	293-603	100	0.15-0.23
Ganiev [17]	1990	$NaCl + H_2O$	Coaxial cylinder	293-673	100	0.0-0.19
Safronov [10]	1990	$KCI + H_2O$	Coaxial cylinder	293-473	100	0.05-0.10

 Table I.
 Measurements of the Thermal Conductivity of Aqueous NaCl and KCl Solutions

for thermal conductivity of NaCl + H_2O and KCl + H_2O at atmospheric pressure [3-7], but there are only a limited amount of data at higher pressures [8-11, 13, 17]. Most of the these measurements were carried out with a hot-wire technique.

2. EXPERIMENTS

The thermal conductivity of aqueous NaCl and KCl solutions was measured with a parallel-plate apparatus otiginally developed by Amirkhanov and Adamov [14] and further improved by Magomedov [12]. This apparatus is suitable for measuring the thermal conductivity of liquids and gases at pressures up to 200 MPa and temperatures up to 500 K. The thermal-conductivity cell is shown in Fig. 1. The cell has a cylindrical form with a 21-mm height and 90-mm outer diameter. The cell is made from a stainless-steel 12X18H10T. The thermal conductivity cell consists of three plates: guard plate (1), upper plate (2), and lower plate (6). The guard plate is surrounded by guard heater (4). The thickness d of the gap between the upper and the lower plate is fixed by supports (11).

The upper plate has a diameter of 68.05 mm. The lower plate has a thickness of 9 mm. The cell is located in a high-pressure vessel made of high-strength steel. The fluid surrounds the cell and fills the gaps between the upper and the lower plates. Both the lower surface of the upper plate and the upper surface of the lower plate are highly polished to decrease heat transfer by radiation. The gap between the upper and the lower plates is $d = 0.3010 \pm 0.0001$ mm. The gap between the guard plate and the upper plate is 1 mm and is filled with glass fiber.

Fig. 1. Parallel-plate thermal conductivity cell: 1, guard plate; 2, upper plate; 3, inner heater; 4, guard heater; 5, differential thermocouple; 6, lower plate; 7, fluid layer; 8 and 9, arms of Wheatstone bridge; 10, glass-fiber layer; 11, support.

		λ	(mW · m ^{- 1} · K	. − 1) at <i>P</i> (MPa	ı)				
T(K)	0.1-2	20	40	60	80	100			
		x = 0.02	25 mass fraction	on of NaCl					
293	594	603	611	619	629	639			
313	624	634	645	654	663	673			
333	650	659	668	679	690	700			
353	669	678	689	700	712	722			
373	680	690	701	713	725	737			
393	687	697	707	719	731	744			
413	687	699	709	723	737	749			
433	680	694	707	720	735	747			
453	673	687	700	714	727	743			
473	658	672	696	700	715	730			
		x = 0.0)5 mass fractio	n of NaCl					
293	591	598	607	616	625	633			
313	620	630	640	649	659	669			
333	647	655	665	675	685	695			
353	665	674	686	696	706	718			
373	677	686	698	709	721	731			
393	681	693	704	718	728	739			
413	684	695	706	719	730	742			
433	678	690	704	716	728	741			
453	670	681	696	709	724	737			
473	655	669	683	695	711	725			
		x = 0.1	0 mass fractio	on of NaCl					
293	588	592	600	608	616	624			
313	615	625	633	641	650	660			
333	640	650	658	668	677	686			
353	649	670	677	689	696	707			
373	668	678	690	700	710	721			
393	676	685	696	707	717	727			
413	677	686	698	710	721	732			
433	672	682	696	707	718	730			
453	663	674	687	700	712	724			
473	649	661	674	685	697	712			

 Table II. Experimental Results for the Thermal Conductivity of Aqueous Solutions of NaCl

		λ	(mW·m ^{−1} ·K	') at <i>P</i> (MPa)				
T(K)	0.1-2	20	40	60	80	100			
		<i>x</i> = 0.1	5 mass fractio	n of NaCl					
293	580	586	593	601	610	617			
313	611	620	625	637	641	650			
333	635	643	650	659	668	677			
353	655	660	670	680	689	696			
373	663	672	682	692	700	708			
393	670	680	687	697	707	717			
413	670	680	690	701	711	722			
433	666	677	689	699	708	719			
453	657	667	680	690	701	713			
473	643	654	665	675	687	700			
		x = 0.2	0 mass fractic	n of NaCl					
293	574	579	585	593	600	605			
313	604	610	618	624	630	638			
333	627	633	642	650	657	664			
353	645	654	661	668	677	685			
373	658	664	672	680	690	698			
393	664	671	679	690	697	705			
413	665	674	682	691	700	708			
433	658	668	678	687	697	706			
453	650	658	669	678	690	700			
473	637	646	656	666	678	690			
		x = 0.2	5 mass fractio	n of NaCl					
293	566	573	578	584	590	597			
313	597	602	610	616	623	628			
333	621	625	633	640	647	653			
353	640	645	652	661	665	673			
373	650	656	664	673	678	688			
393	654	662	670	677	686	696			
413	657	663	671	680	688	698			
433	651	660	670	678	685	694			
453	643	650	660	670	678	688			
473	630	640	647	657	666	678			

Table II. (Continued)

T(K) $0.1-2$ 20 40 60 80 100 x = 0.025 mass fraction of KCl 293 590 598 610 618 628 637 313 624 629 641 651 662 669 333 647 656 666 678 689 699 373 676 689 697 711 722 732 393 684 696 703 718 729 742 413 684 697 707 720 731 744 433 679 691 705 719 729 742 443 657 670 685 700 714 729 x = 0.05 mass fraction of KCl 293 588 595 605 613 620 622 591 600			2	(mW ⋅ m ⁻¹ ⋅ K	(MPa) at <i>P</i> (MPa	1)					
x = 0.025 mass fraction of KCl 293 590 598 610 618 628 637 313 624 629 641 651 662 669 333 647 656 666 678 689 698 353 666 675 686 699 710 720 373 676 689 697 711 722 732 393 684 696 703 718 729 742 413 647 656 665 698 712 725 738 473 657 670 685 698 712 725 738 473 657 670 685 700 714 729 $x = 0.05$ mass fraction of KCl 293 588 595 605 613 620 629 313 617 625 635 646 653 662 333 641	T(K)	0.1-2	20	40	60	80	100				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			x = 0.0	25 mass fracti	on of KCl						
313 624 629 641 651 662 669 333 647 656 666 678 689 698 353 666 675 686 699 710 720 373 676 689 697 711 722 732 393 684 696 703 718 729 742 413 684 697 707 720 731 744 433 679 691 705 719 729 742 453 670 685 698 712 725 738 473 657 670 685 700 714 729 $x = 0.05$ mass fraction of KCl293S88 595 605 613 620 629 313 617 625 635 646 653 662 333 641 650 660 671 680 690 353 659 670 680 690 700 711 373 672 680 692 702 714 724 393 678 688 700 710 712 733 413 678 689 702 713 726 737 433 675 685 698 710 722 733 413 675 584 591 600 607 613 313 <th< td=""><td>293</td><td>590</td><td>598</td><td>610</td><td>618</td><td>628</td><td>637</td></th<>	293	59 0	598	610	618	628	637				
333 647 656 666 678 689 698 353 666 675 686 699 710 720 373 676 689 697 711 722 732 393 684 696 703 718 729 742 413 684 697 707 720 731 744 433 679 691 705 719 729 742 453 670 685 698 712 725 738 473 657 670 685 700 714 729 $x = 0.05$ mass fraction of KCl293 588 595 605 613 620 629 313 617 625 635 646 653 662 333 641 650 660 671 680 690 353 659 670 680 690 700 711 373 672 680 692 702 714 724 393 678 688 700 710 712 733 413 678 689 702 713 726 737 433 675 685 698 710 722 735 453 665 677 691 701 715 730 473 650 665 678 691 705 718 $x = 0.10$ mass fraction of KCl	313	624	629	641	651	662	669				
353666675686699710720373676689697711722732393684696703718729742413684697707720731744433679691705719729742453670685698712725738473657670685700714729 $x = 0.05$ mass fraction of KCl293588595605613620629313617625635646653662333641650660671680690353659670680690700711373672680692702714724393678688700710722733 413 675685698710722735 413 665677691701715730 413 665677691705718 $x = 0.10$ mass fraction of KCl293576584591600607613 413 665677691705718 $x = 0.10$ mass fraction of KCl293576584591600607613 <th <="" colspan="4" td=""><td>333</td><td>647</td><td>656</td><td>666</td><td>678</td><td>689</td><td>698</td></th>	<td>333</td> <td>647</td> <td>656</td> <td>666</td> <td>678</td> <td>689</td> <td>698</td>				333	647	656	666	678	689	698
373 676 689 697 711 722 732 393 684 696 703 718 729 742 413 684 697 707 720 731 744 433 679 691 705 719 729 742 453 670 685 698 712 725 738 473 657 670 685 700 714 729 $x = 0.05$ mass fraction of KCl293 588 595 605 613 620 629 313 617 625 635 646 653 662 333 641 650 660 671 680 690 353 659 670 680 690 700 711 373 672 680 692 702 714 724 393 678 688 700 710 712 733 413 675 685 698 710 722 733 433 675 685 698 710 722 735 453 665 677 691 701 715 730 473 650 665 678 691 705 718 $x = 0.10$ mass fraction of KCl 293 576 584 591 600 607 613 313 607 614 625 630 640 649 <	353	666	675	686	699	710	720				
393684696703718729742413684697707720731744433679691705719729742453670685698712725738473657670685700714729 $x = 0.05$ mass fraction of KCl293588595605613620629313617625635646653662333641650660671680690353659670680690700711373672680692702714724393678688700710715730413678689702713726737443665677691701715730473650665678691705718 $x = 0.10$ mass fraction of KCl293576584591600607613313607614625630640649333641657666675686696313607614625630640649333631638647657665677333647657666	373	676	689	697	711	722	732				
413684697707720731744433679691705719729742453670685698712725738473657670685700714729 $x = 0.05$ mass fraction of KCl293588595605613620629313617625635646653662333641650660671680690353659670680690700711373672680692702714724393678688700710722733413678689702713726737433675685698710722735453665677691701715730473650665678691705718 $x = 0.10$ mass fraction of KCl293576584591600607613313607614625630640649333631638647657665674353647657666675686696373660670688700711722433662672684694706718413668676688 <td< td=""><td>393</td><td>684</td><td>696</td><td>703</td><td>718</td><td>729</td><td>742</td></td<>	393	684	696	703	718	729	742				
433679691705719729742453670685698712725738473657670685700714729 $x = 0.05$ mass fraction of KCl293588595605613620629313617625635646653662333641650660671680690353659670680690700711373672680692702714724393678688700710722733413678689702713726737433675685698710722735453665677691701715730 $x = 0.10$ mass fraction of KCl293576584591600607613 $x = 0.10$ mass fraction of KCl293576584591600607613313607614625630640649 </td <td>413</td> <td>684</td> <td>697</td> <td>707</td> <td>720</td> <td>731</td> <td>744</td>	413	684	697	707	720	731	744				
453670685698712725738473657670685700714729 $x = 0.05$ mass fraction of KCl293588595605613620629313617625635646653662333641650660671680690353659670680690700711373672680692702714724393678688700710722733413678689702713726737433665677691701715730473650665678691705718 $x = 0.10$ mass fraction of KCl293576584591600607613313607614625630640649333631638647657665674353647657666675686696373660670680689700710393666675686696706718413668676688700711722433662672675688700711393666675686696706718413668676688 <td< td=""><td>433</td><td>679</td><td>691</td><td>705</td><td>719</td><td>729</td><td>742</td></td<>	433	679	691	705	719	729	742				
473657670685700714729 $x = 0.05$ mass fraction of KCl293588595605613620629313617625635646653662333641650660671680690353659670680690700711373672680692702714724393678688700710722733413678689702713726737433675685698710722735453665677691701715730473650665678691705718x = 0.10 mass fraction of KCl2935765845916006076133136076146256306406493336316386476576656743536476576666756866963736606706806897007103936666756866967067184136686766887007117224336626726846947067184136626726846947067184136526556756	453	670	685	698	712	725	738				
x = 0.05 mass fraction of KCl293588595605613620629313617625635646653662333641650660671680690353659670680690700711373672680692702714724393678688700710722733413678689702713726737433675685698710722735453665677691701715730473650665678691705718x = 0.10 mass fraction of KCl293576584591600607613313607614625630640649333631638647657665674353647657666675686696373660670680689700710393666675686696706718413668676688700711722433662672684694706718453652665675688702715473641652652675688702715	473	657	670	685	700	714	729				
293588595605613620629313617625635646653662333641650660671680690353659670680690700711373672680692702714724393678688700710722733413678689702713726737433675685698710722735453665677691701715730473650665678691705718x = 0.10 mass fraction of KCl293576584591600607613313607614625630640649333631638647657665674353647657666675686696373660670680689700710393666675686696706718413668676688700711722433662672684694706718413668676688702715433652665675688702715433652665675688702715433652665 </td <td></td> <td></td> <td>x = 0.0</td> <td>05 mass fractio</td> <td>on of KCl</td> <td></td> <td></td>			x = 0.0	05 mass fractio	on of KCl						
313617625635646653662333641650660671680690353659670680690700711373672680692702714724393678688700710722733413678689702713726737433675685698710722735453665677691701715730473650665678691705718x = 0.10 mass fraction of KCl293576584591600607613313607614625630640649333631638647657665674353647657666675686696373660670680689700710393666675686696706718413668676688700711722433662672684694706718453652665675688702715473641652662676687701	293	588	595	605	613	620	629				
333641650660671680690353659670680690700711373672680692702714724393678688700710722733413678689702713726737433675685698710722735453665677691701715730473650665678691705718 $x = 0.10$ mass fraction of KCl293576584591600607613313607614625630640649333631638647657665674353647657666675686696373660670680689700710393666675686696706718413668676688700711722433652665675688702715433652665675688702711433652665675688702715433641652662676687701	313	617	625	635	646	653	662				
353659670680690700711373672680692702714724393678688700710722733413678689702713726737433675685698710722735453665677691701715730473650665678691705718 $x = 0.10$ mass fraction of KCl293576584591600607613313607614625630640649333631638647657665674353647657666675686696373660670680689700710393666675686696706718413668676688700711722433652665675688702715473641652650675688702715	333	641	650	660	671	680	690				
373 672 680 692 702 714 724 393 678 688 700 710 722 733 413 678 689 702 713 726 737 433 675 685 698 710 722 735 453 665 677 691 701 715 730 473 650 665 678 691 705 718 x = 0.10 mass fraction of KCl293 576 584 591 600 607 613 313 607 614 625 630 640 649 333 631 638 647 657 665 674 353 647 657 666 675 686 696 373 660 670 680 689 700 710 393 666 675 686 696 706 718 413 668 676 688 700 711 722 433 652 665 675 688 702 715 473 641 652 662 676 687 701	353	659	670	680	690	700	711				
393678688700710722733413678689702713726737433675685698710722735453665677691701715730473650665678691705718 $x = 0.10$ mass fraction of KCl293576584591600607613313607614625630640649333631638647657665674353647657666675686696373660670680689700710393666675686696706718413668676688700711722433652665675688702715473641652652662676687701	373	672	680	692	702	714	724				
413678689702713726737433675685698710722735453665677691701715730473650665678691705718 $x = 0.10$ mass fraction of KCl293576584591600607613313607614625630640649333631638647657665674353647657666675686696373660670680689700710393666675686696706718413668676688700711722433652665675688702715473641652662676687701	393	678	688	700	710	722	733				
433 675 685 698 710 722 735 453 665 677 691 701 715 730 473 650 665 678 691 705 718 $x = 0.10$ mass fraction of KCl 293 576 584 591 600 607 613 313 607 614 625 630 640 649 333 631 638 647 657 665 674 353 647 657 666 675 686 696 373 660 670 680 689 700 710 393 666 675 686 696 706 718 413 668 676 688 700 711 722 433 662 672 684 694 706 718 453 652 665 675 688 <td< td=""><td>413</td><td>678</td><td>689</td><td>702</td><td>713</td><td>726</td><td>737</td></td<>	413	678	689	702	713	726	737				
453 665 677 691 701 715 730 730 713 650 665 678 691 705 718 718 $x = 0.10$ mass fraction of KCl $x = 0.10$ mass fraction of KCl 600 607 613 613 613 614 625 630 640 649 633 631 638 647 657 665 674 657 665 674 635 647 657 665 674 655 666 675 686 696 674 657 666 675 686 696 674 710 718 353 647 657 666 675 686 696 674 657 666 675 686 696 700 710 739 666 675 686 696 706 718 413 668 676 688 700 711 722 433 662 672 688 702 715 473	433	675	685	698	710	722	735				
473 650 665 678 691 705 718 $x = 0.10$ mass fraction of KCl 293 576 584 591 600 607 613 313 607 614 625 630 640 649 333 631 638 647 657 665 674 353 647 657 666 675 686 696 373 660 670 680 689 700 710 393 666 675 686 696 718 413 668 676 688 700 711 722 433 662 672 684 694 706 718 453 652 665 675 688 702 715 473 641 652 662 676 687 701	453	665	677	691	701	715	730				
x = 0.10 mass fraction of KCl293576584591600607613313607614625630640649333631638647657665674353647657666675686696373660670680689700710393666675686696706718413668676688700711722433652665675688702715473641652662676687701	473	650	665	678	691	705	718				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			x = 0.	10 mass fraction	on of KCl						
313 607 614 625 630 640 649 333 631 638 647 657 665 674 353 647 657 666 675 686 696 373 660 670 680 689 700 710 393 666 675 686 696 706 718 413 668 676 684 694 706 718 453 652 665 675 688 702 715 473 641 652 662 676 687 701	293	576	584	591	600	607	613				
333 631 638 647 657 665 674 353 647 657 666 675 686 696 373 660 670 680 689 700 710 393 666 675 686 696 706 718 413 668 676 684 694 706 718 453 652 665 675 688 702 715 473 641 652 662 676 688 702 715	313	607	614	625	630	640	649				
353 647 657 666 675 686 696 373 660 670 680 689 700 710 393 666 675 686 696 706 718 413 668 676 688 700 711 722 433 662 672 684 694 706 718 453 652 665 675 688 702 715 473 641 652 662 676 687 701	333	631	638	647	657	665	674				
373 660 670 680 689 700 710 393 666 675 686 696 706 718 413 668 676 688 700 711 722 433 662 672 684 694 706 718 453 652 665 675 688 702 715 473 641 652 662 676 687 701	353	647	657	666	675	686	696				
393 666 675 686 696 706 718 413 668 676 688 700 711 722 433 662 672 684 694 706 718 453 652 665 675 688 702 715 473 641 652 662 676 687 701	373	660	670	680	689	700	710				
413 668 676 688 700 711 722 433 662 672 684 694 706 718 453 652 665 675 688 702 715 473 641 652 662 676 687 701	393	666	675	686	696	706	718				
433 662 672 684 694 706 718 453 652 665 675 688 702 715 473 641 652 662 676 687 701	413	668	676	688	700	711	722				
453 652 665 675 688 702 715 473 641 652 662 676 687 701	433	662	672	684	694	706	718				
473 641 652 662 676 687 701	453	652	665	675	688	702	715				
	473	641	652	662	676	687	701				

 Table III. Experimental Results for the Thermal Conductivity of Aqueous Solutions of KCl

		λ	(mW · m ^{- I} · K	⁻¹) at <i>P</i> (MPa)	
	0.1-2	20	40	60	80	100
		x = 0.1	5 mass fractio	on of KCl		
293	567	571	580	586	594	601
313	600	605	612	621	629	636
333	620	628	635	645	652	658
353	638	646	654	662	672	678
373	650	656	666	674	684	694
393	654	664	673	683	693	703
413	657	665	675	685	695	706
433	652	660	670	680	691	701
453	642	652	662	672	683	693
473	630	640	650	661	671	683
		x = 0.2	20 mass fraction	on of KCl		
293	557	561	568	574	582	588
313	587	593	600	607	615	622
333	600	612	623	630	637	644
353	626	633	640	650	659	666
373	635	645	654	659	666	676
393	641	650	660	667	675	683
413	642	653	661	670	680	689
433	640	647	656	665	675	687
453	630	640	650	658	670	680
473	617	627	637	645	657	667
		x = 0.2	25 mass fractio	on of KCl		
293	544	552	558	564	570	575
313	574	580	587	593	599	603
333	596	604	610	615	621	627
353	612	620	627	633	640	648
373	622	630	638	644	650	658
393	678	635	642	650	658	666
413	630	636	645	652	659	667
433	674	633	640	650	658	664
453	616	674	632	643	652	658
473	605	613	619	627	637	645
	005	015	017	027	057	040

Table III. (Continued)

Т	d/S
(K)	(m ⁻¹)
298	0.082765
323	0.082737
348	0.082270
373	0.082675
398	0.082634
423	0.082604
448	0.082570
473	0.082541

Table IV.Dependence of theCell Constant on Temperature

Differential thermocouples are used for the measurement of the temperature difference between the upper and the lower plates. This temperature difference can be determined with a precision of approximately ± 0.0015 K. The thermocouples are made from chromel-copel wire with a double insulation of silk and are 0.2 mm in diameter. They are insulated and fitted into stainless-steel sheaths, which slide into the pressure tubes fitted in the cell. The thermocouples are located at a distance of 0.5 mm from the surface of the liquid layer. The temperature of the upper and the lower plates is measured with a chromel-copel thermocouple with a precision of ± 0.02 K.

Fig. 2. Dependence of the thermal conductivity of aqueous solutions of NaCl on temperature at a number of pressures and concentrations: 1 and 2, 100 MPa; 3 and 4, 0.1 MPa.

Thermal Conductivity of Aqueous Solutions of NaCl and KCl

The thermocouples were calibrated against a platinum resistance thermometer. The cell described above was used in conjunction with an automatic Wheatstone bridge.

The pressure vessel is placed in the thermostat, which maintains the operating temperature within ± 0.01 K. The desired temperature is reached in 10 h. Before filling, the vessel is heated to 423 K and evacuated during 5 h.

The wires of the electrical system are led outside the bath, protected by a tube of stainless steel. The thermostat mixture consists of 45% KNO₃ and 55% NaNO₃. The melting temperature of this mixture is 388 K. The thermostat mixture is intensly stirred with a circulator. At the lower temperatures ($T \le 423$ K) an oil-bath thermostat is used. The thermal conductivity of the aqueous NaCl and KCl solutions is deduced from the relation

$$\lambda = \frac{Qd}{S \,\Delta T} \tag{1}$$

where Q is the power transferred from the upper plate to the lower plate by conduction through the liquid layer, $S = 36.38 \pm 0.01$ cm² the effective area of the upper plate, and ΔT the temperature difference across the liquid layer. The experiments were performed with a temperature difference ΔT about 1 K.

Fig. 3. Dependence of the thermal conductivity of aqueous solutions of KCl on temperature at a number of pressures and concentrations: 1 and 3, 100 MPa; 2 and 4, 0.1 MPa.

The thermal conductivity is calculated from the measured temperature difference ΔT and the measured power Q supplied to the upper plate with the aid of Eq. (1). The dependence of the cell constant d/S on temperature for the present instrument is given in Table II. The pressure effects on the cell constant are negligibly small. The power Q_{exp} in the electrical heater could be measured with an accuracy of 0.08%; Q_{exp} has been corrected for parasitic heat flow through the guard plate. The correction for radiation was negligibly small. The correction for parasitic heat flow was of the order of 0.03%. Considering all sources of possible error, we estimate the total uncertainty in the thermal-conductivity determination to be about $\pm 2\%$.

The pressure of the liquid is transferred to oil via a mercury piston and the oil pressure is measured with a deadweight gauge. The pressure was determined with an uncertainty of $\pm 0.05\%$. This apparatus has previously been tested with ordinary water [15] and heavy water [16]. The solutions were prepared gravimetrically from ion-exchanged distilled water and reagent-grade NaCl and KCl (purity, 99.5%).

3. RESULTS AND DISCUSSION

Experimental thermal-conductivity data were obtained as a function of pressure at 10 isotherms covering a range of temperatures from 293 to 473 K for each concentration, namely, 0.025, 0.05, 0.10, 0.15, 0.20, and 0.25 mass fractions of NaCl and KCl. The experimental results are presented in Tables III and IV. The experimental behavior of the thermal conductivity

Fig. 4. Dependence of the thermal conductivity of aqueous solutions of NaCl on pressure at different temperatures and constant concentrations: 1 and 2, 473 K; 3 and 4, 293 K.

Fig. 5. Dependence of the thermal conductivity of aqueous solutions of KCl on pressure at different temperature and constant concentrations: 1 and 2, 473 K; 3 and 4, 293 K.

of the aqueous NaCl and KCl solutions is shown in Figs. 2-6. It is evident that along each isobar a given concentration shows the thermal-conductivity maximum at temperatures about 413 K. The maxima occur for both systems. Figure 7 is a plot of the thermal conductivity of NaCl solution as a function of temperature and includes the results of earlier measurements

Fig. 6. Dependence of the thermal conductivity of aqueous solutions of NaCl on concentration at a constant temperature and different pressures: 1 and 2, 473 K; 3 and 4, 293 K.

Fig. 7. A comparison between the thermal conductivity data for NaCl + H₂O reported in this paper and those obtained earlier [8, 9] at x = 0.2 mass fraction of NaCl: 1, 473 K; 2, 293 K.

for the same solutions by Eldarov [8] and Nagasaka et al. [9], who used a hot-wire technique. The deviation from the present data is 0.5% for Ref. 9 and 3% for Ref. 8. The results obtained by Safronov et al. [10] for $KCl + H_2O$ are compared with the data from the present work in Fig. 8. In the range up to 60 MPa there is very good agreement with the data of

Fig. 8. Comparison between our experimental values for the thermal conductivity of the KCl + H₂O system at 473 K and x = 0.1 mass fraction of KCl and the values proposed in Ref. 10.

Safronov et al. [10], with deviations of no more than 0.3%. At pressures above 60 MPa the deviations increase to 3%. Their values are higher than the present results. Riedel [3], Kapustinskii and Ruzavin [4], Vargaftik and Osminin [5], and Davis et al. [6] have reported measurements at one atmosphere and at different temperatures. These data agree within $\pm 0.3\%$ with the results of the present investigation.

A comparison of the present results for NaCl + H_2O and KCl + H_2O with earlier work indicates that the instrument yields satisfactory results within its estimated uncertainty of $\pm 2\%$.

4. CONCLUSION

The thermal conductivity of aqueous solutions of NaCl and KCl was measured in the temperature range from 293 to 473 K and in the pressure range up to 100 MPa, with an uncertainty of better than $\pm 2\%$.

REFERENCES

- 1. A. H. Harvey and J. M. H. Levelt Sengers, Chem. Phys. Lett. 156:415 (1989).
- 2. M. L. Japas and J. M. H. Levelt Sengers, J. Phys. Chem. 94:5361 (1990).
- 3. L. Riedel, Chem.-Ing.-Techn. 3:59 (1951).
- 4. A. F. Kapustinskii and I. I. Ruzavin, Zhur. Fiz. Chim. 29:2222 (1955).
- 5. N. B. Vargaftik and Yu. P. Osminin, Teploenergetika 7:11 (1956).
- 6. P. S. Davis, F. Theeuwes, R. J. Bearman, and R. F. Gordon, J. Chem. Phys. 55:4776 (1971).
- 7. V. D. Yusufova, R. I. Pepinov, V. A. Nikolaev, and G. M. Guseinov, *Inzh. Fiz. Zhur.* 29:600 (1975).
- 8. V. S. Eldarov, Zhur. Fiz. Chim. 60:603 (1986).
- 9. Y. Nagasaka, H. Okada, J. Suzuki, and A. Nagashima, Ber. Bunsenges. Phys. Chem. 87:859 (1983).
- 10. G. A. Safronov, Yu. G. Kosolan, and Yu. L. Rastorguev, Experimental study of the thermal conductivity of electrolyts, Grozny (1990), p. 28.
- 11. U. B. Magomedov, Geothermics, Makhachkala, DSC, RAS (1989), p. 103.
- 12. U. B. Magomedov, Geothermics, Makhachkala, DSC, RAS (1992), p. 168.
- 13. Y. Nagasaka, J. Suzuki, and A. Nagashima, Proc. 10th Int. Conf. Prop. Steam, V. V. Sychev and A. A. Aleksandrov, eds. (Mir, Moscow, 1984), Vol. 2, p. 203.
- 14. Kh. I. Amirkhanov and A. P. Adamov, Teploenergetika 10:75 (1963).
- Kh. I. Amirkhanov, A. P. Adamov, and U. B. Magomedov, *Teplofiz. svoistva veshestv i mater. GSSSD Moscow* 21:35 (1984).
- Kh. I. Amirkhanov, A. P. Adamov, and U. B. Magomedov, Teplofiz. Visokikh Temp. 12:1129 (1974).
- 17. Y. Ganiev, M. O. Musoyan, Yu. L. Rastorguev, and B. A. Grigoryev, Proc. 11th Int. Conf. Prop. Water Steam, M. Pichal and O. Sifner, eds. (Hemisphere, New York, 1990), p. 132.